
The math for the ADS hexapod systemGaston Gutierreza and Andrew StefanikaaFermilab, PO Box 500, Batavia, IL 60510September 25, 2008ABSTRACTIn this note we will alulate the fores and motions for the urrent ADS design of the DECam hexapod system.We will show that the maximum fore in any hexapod atuator is about 2/3 of the total DECam weight andthat an atuator resolution of 12xxx mirometers is enough to meet the urrent DES positioning requirements.The study of the e�et of loads on the atuators will show that a position measurement feedbak system loseto the foal plane will be needed. The vibratonal modes will also be alulated.1. INTRODUCTIONThis note is an extension of a previous general note titled \The math of the hexapod system". Currently ADSis designing and bulding the hexapods for DECam, so we feel that it will be useful to update the general notementioned above with the design parameters provided to us by ADS.In Setion 2 we will speify the ADS hexapod on�gurations and disuss the transformations that will beused to study the motion and fores in the hexapod system. In Setion 3 we will alulate the fores on theatuators and study how these fores hange as the amera and the age are moved as a unit through spae(keeping the atuator motors o�). In Setion 4 we will alulate how eah atuator length has to be hanged tomove the motion plate relative to the �xed plate. The e�et of moving one atuator at a time and the errorsintrodued by the fat that this an only be done in �nite steps will also be studied in Setion 4. In Setion 5we will alulate the e�et of elasti deformations due to loads on the hexapod atuators. And �nally in Setion6 we will study the hexapod vibrations.2. THE ADS HEXAPOD SYSTEMThe hexapod system onsists of six atuators and two plates whih are referred to as the motion and �xed plates.The motion plate is rigidly attahed to the amera while the �xed plate is rigidly attahed to the age. One endof the atuators inserts in the �xed plate, the other end inserts in the motion plate.For the ADS Con�guration, one end of the atuators insert in the motion plate as is shown in Figure 1 left,the other atuator end inserts in the �xed plate as is shown in the enter �gure. If eah atuator is attahedin eah of the six plate insertion points using a ball joint then at eah joint the atuator is allowed to freelyrotate in all three dimensions. The amera an be held in spae by applying the right set of fores at eah of thesix motion plate insertion points. At eah of these points the atuators an independently push or pull by anyamount. This means an arbitrary fore omponents at eah insertion point, for a total of six independent foreswhih is enough to satisfy the six stati equations that ome from the sum of all fores and all moments.The six insertion points in the motion plate an be arbitrarily positioned with respet to the six insertionpoints in the �xed plate. One this relative position is �xed the distanes between the points an be alulated.This set of distanes is unique, that is di�erent positions of the motion plate relative to the �xed one will reatea di�erent set of six distanes. This one-to-one orrespondene means that the relation an be inverted, or thatspeifying a set of six distanes will reate a unique position of the motion plate relative to the �xed one. If onewishes to do so, only one of the six distanes an be hanged at a given time whih guarantees that the hexapodFor further information ontat: G. Gutierrez: E-mail: gaston�fnal.gov, Telephone: 630-840-4107. A. Stefanik:E-mail: stefanik�fnal.gov, Telephone: 630-840-4131 1



Figure 1. Motion plate (left), �xed plate (enter), hexapod system (right).system is not over-onstrained. We will mathematially prove in Setion 4 that this is the ase, but before doingthat we have to de�ne the vetors for eah of the plate insertion points and their rotations and translations.The insertion points will be labeled as �!r 0i for the motion plate and �!R 0i for the �xed plate. They arealulated as �!r 0i = [r os(�i + Æ0); r sin(�i + Æ0); 0:5(A+A0)℄ (1)�!R 0i = [R os(�i + Æ0); R sin(�i + Æ0); 0:5(A�A0)℄ (2)The angles �i and �i are given in Table 1. The motion plate radius r and the �xed plate radius R and thedistanes A and A0 are given in Table 2. The angle Æ0 is arbitrary and allows us to rotate the insertion pointsaround the z-axis. When the amera is pointing up the plane of the �xed plate forms the x-y plane of theoordinate system, the z-axis points up and the origin of the oordinate system is entered on the �xed plate.Table 1. Angles, in degrees, orresponding to the points where the atuators insert into the motion and �xed plates.i 1 2 3 4 5 6ADS on�guration motion plate �i 13 107 133 227 253 347�xed plate �i 47 73 167 193 287 313Table 2. Motion and �xed plate insertion points radius r and R. The distanes A, A', B and C are desribed in the textand shown in Figure 2. All numbers are in millimeters.r R A A' B CADS on�guration 660 680 850 553 100 578Two planes will be seleted to de�ne rotations and translations. One will be the plane of the motion plate,and the other will be the foal plane. The translations on these planes will be de�ned as (�x;�y;�z). Therotations an be de�ned by the Euler angles (��;��;�) or by the rotations around the x, y and z axis(tip,tilt,twist)=(��x;��y;��z). The mathematis to perform these rotations is desribed in Appendix A.Figure 2 shows distanes between di�erent parts of the DECam amera. The distane between the �xed andmotion plates is labeled A. The distane between the motion plate and the amera's Center of Mass (CM) is B,and the distane between the CM and the foal plane is labeled C. Figure 2 also shows the planes where theatuators insert into the �xed and motion plates. The distane between these planes is labeled A'. The valuesof the previous distanes are given in Table 2. 2



Figure 2. Side view of hexapod system and foal plane. Also shown is the amera Center of Mass (CM). The di�erentdistanes are listed in Table 2 and desribed in the text.To avoid oupling rotations with translations the rotation of either the motion or foal planes has to be doneat the oordinate system origin. After the rotation is performed the plane an be translated to its designedposition. This rotation a�ets the motion plate insertion points, so the �nal position of these insertion points isobtained as follows:� Translate �!r 0i until the motion plate or foal plane is at the oordinate systems origin. This translationwill be given by the vetor �!d .� Perform rotation Rot.� Translate insertion points so the motion plate or foal plane is bak at their design position. This translationis again given by �!d .� Performed translations �!r 0 = (�x;�y;�z)Then the �nal position of the motion plate insertion points will be�!r i = Rot (�!r 0i ��!d ) +�!d +�!r 0 (3)When de�ning the amera rotations and translations relative to the motion plate we have �!d = (0; 0; A). Whenthe foal plane is used to de�ne rotations and translations we have �!d = (0; 0; A+B +C). For motions relativeto the Center of Mass �!d = (0; 0; A+B). For small angle rotations one an use tip, tilt and twist and Rot willbe the matrix given in Appendix A Eq. 59. In the general ase we an use the matrix given in Appendix A Eq.51. The �xed plate insertion points don't move, therefore�!R i = �!R 0i (4)The atuators lie in the line that onnets points �!r i and �!R i. The vetor di�erene between the points is�!L i = �!r i ��!R i (5)Therefore the atuator's length is given by Li = j�!L ij, and the unit vetors in the diretion of the atuators aref̂i = �!L iLi (6)3



The Center of Mass position �!r 0CM = (0; 0; A + B) is also rotated and translated aording to Eq. 3 to give�!r CM = Rot (�!r 0CM ��!d ) +�!d +�!r 0.When the amera is rotated away from the vertial position we need to rotate all vetors assoiated with theamera or the age (exept gravity of ourse). This rotation is performed using the Eq. 51 matrix in AppendixA. That is �!V 0 = R(�; �; )�!V (7)where �!V is any of the vetors alulated in this setion.3. FORCES ON THE HEXAPOD ACTUATORSIn this setion we will study the fores exerted by the hexapod atuators. We de�ne a fore as positive whenthe atuator pushes on the motion plate whih means that the atuator is under ompression. When the foreis negative the atuator is pulling on the motion plate and it is under tension.To study the atuator fores both the �xed and motion plates (or age and amera) will be rotated as a unitbetween 0 and 90 degrees around the y-axis and between 0 and 360 degrees around the amera axis. In terms ofEuler angles (see Appendix A) this means � = 0Æ, 0Æ � � � 90Æ and 0Æ �  � 360Æ, whih overs the full rangeof atuator fores.The motion plate will be assumed to be parallel to the �xed plate and sharing the same axis. In the notationof the previous setion this means �x = �y = �z = 0 and �� = �� = � = 0 (or ��x = ��y = ��z = 0).The ases where the motion plate is rotated or translated relative to the �xed plate an be easily studied too, butsine these displaements are small and the motion plate will be oriented in every possible position, for simpliitywe deided to just run the parallel and oaxial ase.As explained in the previous setion one the positions of the �xed and motion plates (and the atuatorinsertion points) are given, the unit vetors f̂i an be easily alulated (see Eqs 1 to 6). With the vetors f̂i, therelations given in Appendix B (Eqs 60 to 67) an be used to alulate the fore per unit amera weight (F=w)exerted by the atuators.When the amera is vertial all atuator fores will be equal and independent of . As the telesope rotatesthe fore on the atuators will hange. Perhaps the most interesting ase to start the disussion with is the asein whih the amera is horizontal (� = 90Æ) and rotates around its axis (0Æ �  � 360Æ). Figure 3 shows F=w for� = 90Æ as a funtion of  for all six atuators. The atuators are paired aording to the way they insert in themotion plate. When looking from the foal plane towards the hexapod,  = 0 orrespond to the ase in whihatuators 1 and 6 insert on both sides of 6 o'lok, with atuator 6 oming from the left and 1 from the right.Atuators 2 and 3 insert on both sides of 2 o'lok with atuator 2 going up and 3 oming down. Atuators 4and 5 insert on both sides of 10 o'lok with atuator 4 oming down and 5 going up.
Figure 3. Atuators fores per unit amera weight (F=w) for � = 90Æ as a funtion of . The atuators are paired aordingto the way they insert in the motion plate: 6 and 1 (left), 2 and 3 (enter), 4 and 5 (right). Atuators 2, 4 and 6 are inred, 1, 3 and 5 in blak.As we an see from the left plot in Figure 3 the atuators on both sides of the 6 o'lok ( = 0) insertionpoint experiene an almost negligible fore. The main purpose of these small fores is to anel out the residual4



moments left from the push-pull of the fores around the 2 and 10 o'lok insertion points. At 6 o'lok there isalso a small up or down omponent, but this fore is small beause in this position atuators 1 and 6 are almosthorizontal, so the weight of the amera is being supported by the fores at the 2 and 10 o'lok insertion points.The atuator fores for the 2 and 10 o'lok insertion points an be red out from the  = 0 point at the enterand right plots in Figure 3. We an see that the going up atuators (2 and 5) are pushing while the downwardones (3 and 4) are pulling. The pushing and pulling fores are almost equal. This produes a total fore whosemain omponent is on the vertial plane and a small horizontal omponent whose sign depends on the exat CMposition. This is needed to support the amera weight and to anel (together with the small horizontal foresat 6 o'lok) the moment produe by the fat that the CM is displaed from the motion plate.As the angle  inrease the amera rotates ounterlokwise. At  = 60Æ the 2 o'lok point has moved to12 o'lok. At this point atuators 2 and 3 are almost horizontal (see enter plot in Figure 3). This produesa fore that only serves to anel moments and the weight of the amera is supported by the now at 8 and 4o'lok points. The maximum fores are lose to the 3 (or 9) o'lok point beause here there is one insertionpoint between 12 and 6 o'lok but 2 between 6 and 12 o'lok.Figure 4 shows F=w for � = 60Æ as a funtion of  for all six atuators.
Figure 4. Atuators fores per unit amera weight (F=w) for � = 60Æ as a funtion of . The atuators are paired aordingto the way they insert in the motion plate: 6 and 1 (left), 2 and 3 (enter), 4 and 5 (right). Atuators 2, 4 and 6 are inred, 1, 3 and 5 in blak.So we an study all the atuator fores by just following one insertion point around the lok or if we onlywant the maximum fore by following just one atuator. Figure 5 shows the fores on atuators 1 and 6 fordi�erent values of �. The light blue, blue, green, red and blak urves orrespond to � equals to 0, 30, 45, 60 and90 degrees. We an see that the maximum fore exerted by an atuator is about 2/3 of the total amera weight.

Figure 5. F=w as a funtion of  for atuator 1 (plot 1), and atuator 6 (plot 2). The light blue, blue, green, red andblak urves orrespond to � equals to 0, 30, 45, 60 and 90 degrees.5



4. MOTION AND ACCURACY STUDIESNow we will turn our attention to the study of how the hexapod system moves. Sine we are trying to understandthe auray with whih the hexapod system an position the amera we will restrit ourselves to small motions(of the order of a millimeter at the foal plane) whih, as explained in Appendix A.1, have the advantage thatrotations ommute and movements an be treated in a linear way.The restrition to small motions will not hange the generality of our onlusions for two reasons: 1) almostinevitably after large movements there will be small adjustments to reah the �nal amera position, so the �nalauray of the hexapod system relies on the ability to make small movements, and 2) given a hange in lineartranslations and in angles the hange in atuators length an be easily alulated in a very general way (seeSetion 2), so exept for the inversion to go from atuator lengths to motion, every thing else alulated in thissetion an be easily generalized.For small motions the relation between translations and rotations with respet to the three oordinate axisand the atuators length will be given by a 6x6 matrix M . Equation 59 in Appendix A.1 shows that for smallrotations we an alulate eah rotation independently and then add the e�et of eah one to obtain the �nalrotation. For translations this is also the ase, so the olumns of M an be alulated by performing onemotion at a time. For example a translation along the x-axis by an amount �x will indue a hange in thelength of the six atuators (�Lx1 ;�Lx2 ;�Lx3 ;�Lx4 ;�Lx5 ;�Lx6) and this will onstitute the �rst olumn of ourmatrix. A translation along the y-axis by an amount �y will indue a hange in the length of the six atuators(�Ly1 ;�Ly2;�Ly3 ;�Ly4;�Ly5 ;�Ly6). And the e�et of both translations will be (�Lx1 +�Ly1 ;�Lx2 +�Ly2 ;�Lx3 +�Ly3 ;�Lx4 + �Ly4;�Lx5 +�Ly5 ;�Lx6 +�Ly6). So we alulate the 6x6 matrix M by performing small motionsusing the general equations given in Setion 2. We de�ne translations and rotations in two di�erent plaes: 1)the motion plate, and 2) the foal plane. For the ADS hexapod on�guration and translations and rotationsde�ned at the motion plate we obtain0BBBBBB� �L1�L2�L3�L4�L5�L6
1CCCCCCA = 0BBBBBB� 0:265 �0:514 0:816 0:217 �2:733 �1:795�0:578 �0:028 0:816 2:476 1:179 1:7950:314 0:486 0:816 2:259 1:554 �1:7950:314 �0:486 0:816 �2:259 1:554 1:795�0:578 0:028 0:816 �2:475 1:179 �1:7950:265 0:515 0:816 �0:217 �2:733 1:795

1CCCCCCA0BBBBBB� �x�y�z��x��y��z
1CCCCCCA (8)where �x, �y and �z are translations along the x, y and z axis in mirometers, ��x, ��y and ��z are rotationsaround the x, y and z axis in arseonds and �L1, �L2, �L3, �L4, �L5 and �L6 are atuators length hangesin mirometers.Equation 8 an be inverted to give a relation between the hange in atuators length and the amera trans-lations and rotations:0BBBBBB� �x�y�z��x��y��z

1CCCCCCA = 0BBBBBB� 0:049 �0:564 0:514 0:514 �0:564 0:049�0:622 �0:269 0:354 �0:354 0:269 0:6220:204 0:204 0:204 0:204 0:204 0:2040:060 0:132 0:071 �0:071 �0:132 �0:060�0:117 0:006 0:111 0:111 0:006 �0:117�0:093 0:093 �0:093 0:093 �0:093 0:093
1CCCCCCA0BBBBBB� �L1�L2�L3�L4�L5�L6

1CCCCCCA (9)The fat that Eq. 8 inverts without a problem proves that the hexapod system is not over-onstraint. In otherwords we an move one atuator at a time and the entire system will move without problems. For example ifthe length of atuator 1 hanges by �L1 = 10 �m then the amera will move in x, y and z by 0.5, -6.2 and 2.0mirometers and it will rotate around x, y and z by 0.6, -1.2 and -0.9 arseonds. As expeted there is a lot ofsymmetry in Eq. 9. For example atuators 1 and 6 insert in the motion plate at two points on oposite sides ofthe x-axis, so they will both push in x and z in the same diretion but they will push in opposite diretions in y,so the translation in z and rotations around the y-axis will have the same sign and translations in y and rotationaround the x and z-axis will have opposite signs. And this is what we see in Eq. 9.6



Equations 8 and 9 are essential to alulate motion but no partiular number in the two matries is veryimportant, speially beause these numbers depend on how we de�ne the oordinate system with respet tothe insertion points. So we need other numbers to understand how preisely the hexapod system an move theamera. We see for example from Eq. 8 that if we want to move by �x = 10 �m then the atuators lengths�L1 to �L6 will have to hange by 2.65, -5.78, 3.14, 3.14, -5.78 and 2.65 mirometers respetively. If theminimum atuator step size is 1 mirometer then the hanges will be 3, -6, 3, 3, -6 and 3 steps, so there willbe errors due to the �nite size of the atuators steps. Over many motions these errors will at randomly andgenerate a distribution of errors in all three translations and rotations. The rms of these distributions an bealulated by adding the numbers in Eq. 9 in quadratures. If we write Eq. 8 as �!�L = M �!�x and Eq. 9 as�!�x =M�1�!�L and assume that the step size SL is the same in all atuators then the rms of the distributions willbe �i =qPj(M�1i;j )2 �L, with �L = SL=p12 � 0:29SL (the fator 1=p12 is just the rms of a square distributionof width 1). For Eq. 9 these number are:(�x; �y; �z; ��x ; ��y ; ��z) = (1:08; 1:08; 0:50; 0:23; 0:23; 0:23) �L (10)As with every distribution we may wonder how far the tails of the above mentioned distributions go. So anotheruseful number is the maximum error that an be introdued due to the �nite atuator step size. If h is theminimum interval that ontains all errors, and if we assume that all step size errors onspire to give the largestpossible deviation then hi = (Pj jM�1i;j j)SL. For Eq. 9 these gives(hx; hy; hz; h�x ; h�y ; h�z) = (2:25; 2:25; 1:23; 0:53; 0:47; 0:56) SL (11)We an now alulate the equivalent of Eqs 8 to 11 when translations and rotations are de�ned in the foalplane. They are0BBBBBB� �L1�L2�L3�L4�L5�L6
1CCCCCCA = 0BBBBBB� 0:265 �0:514 0:816 �1:474 �3:603 �1:795�0:578 �0:028 0:816 2:383 3:079 1:7950:314 0:486 0:816 3:858 0:525 �1:7950:314 �0:486 0:816 �3:857 0:525 1:795�0:578 0:028 0:816 �2:382 3:079 �1:7950:265 0:515 0:816 1:475 �3:603 1:795

1CCCCCCA0BBBBBB� �x�y�z��x��y��z
1CCCCCCA (12)0BBBBBB� �x�y�z��x��y��z

1CCCCCCA = 0BBBBBB� �0:336 �0:543 0:878 0:878 �0:543 �0:336�0:820 �0:701 0:119 �0:119 0:701 0:8200:205 0:204 0:204 0:204 0:204 0:2040:060 0:132 0:071 �0:071 �0:132 �0:060�0:117 0:006 0:111 0:111 0:006 �0:117�0:093 0:093 �0:093 0:093 �0:093 0:093
1CCCCCCA0BBBBBB� �L1�L2�L3�L4�L5�L6

1CCCCCCA (13)(�x; �y; �z; ��x ; ��y ; ��z) = (1:53; 1:53; 0:50; 0:23; 0:23; 0:23) �L (14)(hx; hy; hz; h�x ; h�y ; h�z) = (3:51; 3:28; 1:23; 0:53; 0:47; 0:56) SL (15)We an see that the only di�erenes between Eqs 8 and 12 are in the olumns orresponding to ��x and ��y.These are the only expeted di�erenes and they are due to the fat that rotations around the x and y axis atthe motion plate produe translations at the foal plane.Eq. 12 inverts without any problem, whih again proves that the hexapod system is not over-onstraint overa large range of parameters. As briey disussed in Setion 2 this is a general property and it goes as follows.In general we have six atuator insertion points in the motion plate and six in the �xed plate. The six insertionpoints in the motion plate an be arbitrarily positioned with respet to the six insertion points in the �xed plate.One this relative position is �xed the distanes between the insertion points an be alulated. This set ofdistanes is unique, that is di�erent positions of the motion plate relative to the �xed one will reate a di�erentset of six distanes. This is true as long as we don't line up two points in the motion plate with two points7



in the �xed plate identially. This will reate degeneraies but also will make the amera unable to stand inspae, beause six non-degenerate parameters are needed to position a body in three dimensional spae. So ifthe amera is to stand in spae, for a given position of the motion and �xed plates the distanes between theatuator insertion points is unique. This one-to-one orrespondene means that the relation an be inverted, orthat speifying a set of six distanes will reate a unique position of the motion plate relative to the �xed one.Therefore only one of the six distanes an be hanged at a given time whih guarantees that the hexapod systemis not over-onstrained. Therefore as long as the atuators an rotate freely in three dimensions at the insertionpoints the hexapod system is not onstrained at all. The only onstraining will ome from the binding at theatuator insertion points, so these insertions will have to be designed arefully to make sure that the binding issmall enough so that the system will move when any of the atuators is moved by one step.Table 3 summarizes the rms errors �i and the minimum intervals ontaining all possible errors hi. As expetedfrom the e�et of x and y rotations just mentioned, the numbers for x and y translations inrease when going fromthe motion plate to the foal plane. Other than that the numbers don't hange muh between on�gurations.Table 3. Summary of rms errors �i and the minimum intervals ontaining all possible errors hi.�x=�L �y=�L �z=�L ��x=�L ��y=�L ��z=�LADS on�guration motion plate 1.08 1.08 0.50 0.23 0.23 0.23foal plane 1.53 1.53 0.50 0.23 0.23 0.23hx=SL hy=SL hz=SL h�x=SL h�y=SL h�z=SLADS on�guration motion plate 2.25 2.25 1.23 0.53 0.47 0.56foal plane 3.51 3.28 1.23 0.53 0.47 0.56The only point that remains to be studied is the stability with respet to the seletion of the oordinatesystem. The angle Æ0 in Eqs 1 and 2 rotates the insertion points around the z-axis. We studied the dependeneof the numbers in Table 3 as a funtion of Æ0. All six rms's �i are ompletely independent of Æ0, and the valuesof hi only hange slightly. Figure 6 shows the values of hx=SL to h�z=SL as a funtion of Æ0. We an see thatthe numbers are very stable.

Figure 6. This �gure shows (hx; hy; hz; h�x ; h�y ; h�z )=SL (blak, red, green, blue, magenta and light blue) as a funtion ofÆ0 with displaements and rotations de�ned at the foal plane. The angle Æ0 is de�ned in Eqs 1-2.The toleranes spei�ed in the hexapod RFP � are: �x = �y = � 25 �m, �z = � 7.50 �m and ��x = ��y= � 3 arseonds (1 arse = 4.8 �rad). Using Table 3 and the foal plane as a referene for rotations andtranslations the previous spei�ations translate into the following step sizes SL: 14 �m (50/3.5) for lateral�See \Request for proposals (RFP). DECam Hexapod Position Adjustment System Spei�ation". R. Frenh Leger,Dave MGinnis, Andy Stefanik, Darren DePoy, Gaston Gutierrez, Brenna Flaugher. February 4, 2008 - Revision 3.8



motion, 12 �m (15/1.23) for fousing and 12 �m (6/0.5) for tip and tilt. So we see that an atuator resolutionof 12 �m is enough to satisfy our spei�ations.5. EFFECT OF LOADS ON THE ACTUATORSThe design sti�nes of the hexapod atuators is 240 N/�m. Then a displaement �L produes a fore F givenby F [N ℄ = 240 �L[�m℄ (16)with �L in mirometers and F in Newtons. For a amera weight of 35000 Newtons the maximum atuatorload will be 23000 Newtons, whih will produe an atuator deformation of 96 mirons. The e�et of thesedeformations an be easily alulated as follow: 1) alulate fores as in Setion 3, 2) with Eq. 16 alulate theatuator deformations and 3) with Eq. 13 alulate the foal plane motion due to these deformations. The resultof these alulations is shown in Figure 7.Plots 7.1 to 7.6 show the foal plane displaements (�x;�y;�z;��x;��y;��z) as a funtion of  due to theelasti deformation of the atuators. The light blue, blue, green, red and blak urves in eah plot orrespondto � values of 0, 30, 45, 60 and 90 degrees. This range of � and  overs the entire motion of the telesope. Thedisplaements shown in the plots exeed our spei�ations. This of ourse means that as the telesope moves wewill have to step the atuators to orret for the atuators elasti deformations. One an do this by monitoringthe length of the atuators, or by installing devies to measure the position of the amera relative to the age.In our minds the problem of just ontrolling the length of the atuators is that most likely there will be otherdeformations (like at the atuator insertion points) that an not be ompensated that way. So it appears to usthat installing devies to measure the position of the amera with respet to the age is the right thing to do,speially if these devies are installed near the foal plane.

Figure 7. Plots 1-6 show the foal plane motions (�x;�y;�z;��x;��y;��z) produed by the elasti deformations of theatuators as the telesope moves. The displaements are plotted as a funtion of  and the light blue, blue, green, redand blak urves orrespond to � values of 0, 30, 45, 60 and 90 degrees. Lengths are in mirometers, angles in arseonds.9



We want now to turn our attention to the problem of trying to fous the amera during exposures. As we ansee from Eq. 13 if we step all atuators by the same amount (�L1 = �L2 = �L3 = �L4 = �L5 = �L6 = �L)then the foal plane moves in the z diretion by the amount �z = 1:22�L, and all the other motions are zero.Then assuming that all atuators an at equally the motion of fousing the amera should be smooth and shouldonly a�et the z-motion. This is true exept for elasti deformations. As the atuators move theirs lengths willhange and sine the loads on the atuators is usually very di�erent they will deform by di�erent amounts. Westudied this problem in the following way: 1) for a given amera position we alulated all the atuator loads,2) we moved the amera axially by 10 millimeters and realulated all the loads, 3) we alulated the elastideformation on the atuators due to the hange in loads and 4) we used Eq. 13 to alulate all the displaements.The results of this alulation are shown in Figure 8. The plots are de�ned as in Figure 7. We an see that allmotions are well within spei�ations. So we should be able to fous the amera smoothly if all atuators anbe made to move in syn by the same amounts.

Figure 8. Plots 1-6 show the foal plane motions (�x;�y;�z;��x;��y;��z) produed by the elasti deformations of theatuators as the amera is moved by 10 millimeters along its axis. The displaements are plotted as a funtion of  andthe light blue, blue, green, red and blak urves orrespond to � values of 0, 30, 45, 60 and 90 degrees. Lengths are inmirometers, angles in arseonds. 6. CAMERA VIBRATIONSIn this setion we will alulate eigenvalues and eigenvetors for the hexapod vibrations. We will make two (inour minds) very reasonable simplifying assumption. The �rst one is that the prinipal axis of the moment ofinertia tensor oinide with the amera axis. The seond one is that vibrations are dominated by the elongationof the hexapod legs.Due to the �lters and the eletroni rates the amera does not have rotational symmetry around the tele-sope's axis. But we will assume that this deviation from symmetry will have a small e�et in the vibrationmodes. In this ase the moment of inertia tensor will be diagonal in the oordinate system of the amera.10



The �xed and motion plates an be designed suh that they deform very little in omparison to the deforma-tions of the haxapod legs, so it is reasonable to ignore these deformations. Also we believe that the transversevibrations of the hexapod legs an be ignored. The reason is that the hange in length of the hexapos legs due totranverse vibrations is negligible, and therefore the amera motion should not be a�eted by these vibrations. Wewill further assume that the elongation of the hexapos legs is elasti and an be desribed by a single onstant.This onstant will be dominated by the weakest point in the leg, and ould be either the atuator or the joint.In the presene of motion equations 61 and 62 have to be modi�ed to read6Xi=1 Fi f̂i + �!w = d(m�!v )dt (17)6Xi=1 Fi �!� i � f̂i = d(I �!w )dt (18)where (as before) the translations and rotations are de�ned with respet to the enter of mass. For smalldeformations the motion of the amera due to the elasti deformation of the hexapod legs an be onsidered linear.Therefore vibrations will be linearly superimposed to the amera motion due to gravity, then for alulatingvibrations we an set �!w = 0 in Eq. 17. Following the notation of Eq. 64 we an write0BBBBBB� fx1 fx2 fx3 fx4 fx5 fx6fy1 fy2 fy3 fy4 fy5 fy6fz1 fz2 fz3 fz4 fz5 fz6nx1 nx2 nx3 nx4 nx5 nx6ny1 ny2 ny3 ny4 ny5 ny6nz1 nz2 nz3 nz4 nz5 nz6
1CCCCCCA0BBBBBB� F1F2F3F4F5F6

1CCCCCCA = d2dt2 0BBBBBB� m�xm�ym�zIx��xIy ��yIz ��z
1CCCCCCA (19)As shown in Eqs 8, 12 and ?? for small hexapod motions we an establish a linear relation between the ameramovement and the hange in length of the hexapod legs. The relationship will be given by a matrix E de�nedas: 0BBBBBB� �L1�L2�L3�L4�L5�L6

1CCCCCCA = E 0BBBBBB� �x�y�z��x��y��z
1CCCCCCA (20)The fore Fi along a hexapod leg and the leg's deformation �Li are related by Fi = �k�Li. The minus signis due to the fat that the fores Fi are de�ned as positive when they push on the amera. For vibrations when�Li is positive the fores are pulling on the amera and therefore the need for the minus sign. Then Eq. 19redues to (M � E) 0BBBBBB� �x�y�z��x��y��z

1CCCCCCA = �mk d2dt2 0BBBBBB� �x�y�z~Ix��x~Iy��y~Iz ��z
1CCCCCCA (21)where M and E are the matries in Eqs 19 and 20, and ~Ii = Ii=m. For the Con�guration 1 parameters given inTables 1 and 2 we have 11



(a) = (M �E) = 0BBBBBB� 1:440 0:000 0:000 0:000 �0:494 0:0000:000 1:440 0:000 0:494 0:000 0:0000:000 0:000 3:120 0:000 0:000 0:0000:000 0:494 0:000 0:670 0:000 0:000�0:494 0:000 0:000 0:000 0:670 0:0000:000 0:000 0:000 0:000 0:000 0:924
1CCCCCCA (22)whih learly deouples Eq. 21 into the following equations� a11 a15a51 a55 �� �x��y � = � 1!20 d2dt2 � �x~Iy ��y � (23)� a22 a24a42 a44 �� �y��x � = � 1!20 d2dt2 � �y~Ix��x � (24)a33�z = � 1!20 d2dt2 (�z) (25)a66��z = � 1!20 d2dt2 � ~Iz ��z� (26)with a11 = a22 = 1:440, a15 = a51 = �a24 = �a42 = �0:494, a55 = a44 = 0:670, a33 = 3:120 and a66 = 0:924.For onviniene we have written !0 = pk=m whih is the angular frequeny of one haxapod arm when loadedwith the entire amera mass. The solutions of the harmoni osilator equations 25 and 26 are sin(!t) and os(!t)with !z = !0pa33 for Eq. 25 and !�z = !0qa66= ~Iz for Eq. 26.To solve Eq. 23 (or Eq. 24) we make a linear transformation to a new set of variable (�; �)� �x��y � = � u11 u12u21 u22 �� �(t)�(t) � = U � �(t)�(t) � (27)with this transformation Eq. 23 beomes�U1 � a11 a15a51= ~Iy a55= ~Iy � U � � �(t)�(t) � = � 1!20 d2dt2 � �(t)�(t) � (28)and now we onstrut U suh that the matrix in square brakets beomes diagonal. That isU1 � a11 a15a51= ~Iy a55= ~Iy � U = � �� 00 �� � (29)so we arrive at having to diagonalize the 2x2 matrix� A� �j BC D � �j �� u1ju2j � = � 00 � (30)with (A;B;C;D) = (a11; a15; a51= ~Iy; a55= ~Iy) for Eq. 23, and (A;B;C;D) = (a22; a24; a42= ~Ix; a44= ~Ix) for Eq. 24.One the diagonalization problem is solved Eq. 28 redues tod2�(t)dt2 + !20 �� �(t) = 0 (31)d2�(t)dt2 + !20 �� �(t) = 0 (32)12



whih are just the equations of the harmoni osillator with frequenies !i = !0p�i. The solution of Eq. 30gives the eigenvalues �� = (A+D)�p(A�D)2 + 4CB2 (33)and the eigenvetors U = � 1 1�(A� ��)=B �(A� �+)=B � (34)Sine we are assuming rotational symmetry we have that Ix = Iy , then the eigenvalues of Eqs 23 and 24 are thesame. Then there will be six vibration resonanes with frequeies fi = f0p�i with�1;2 = 0:5 �(a22 + a44=~I)�q(a22 � a44=~I)2 + 4a224=~I� (35)�3;4 = 0:5 �(a22 + a44=~I) +q(a22 � a44=~I)2 + 4a224=~I� (36)�5 = a33 (37)�6 = a66=~Iz (38)Writing 1 = �(a22 � �1)=a24 and 2 = �(a22 � �3)=a24 the orresponding matrix of olumn eigenvetorswill be U = 0BBBBBB� 1 0 1 0 0 00 1 0 1 0 00 0 0 0 1 00 1 0 2 0 0�1 0 �2 0 0 00 0 0 0 0 1
1CCCCCCA (39)The moments of inertia per unit mass of a solid ylinder are ~Ix = ~Iy = (3R2 +H2)=12 and ~Iz = R2=2, where Rand H are the radius and hight of the ylinder. For a ylinder with all the mass onentrated in the radial skinwe have ~Ix = ~Iy = (6R2 +H2)=12 and ~Iz = R2.Assuming that DECam is a solid ylinder of R=0.6 meters and H=2 meters (~I = 0:423 and ~Iz = 0:180) andCon�guration 1 for the hexapods we have for the eigenvalues and eigenvetorsf = f0 � 0:865 0:865 1:508 1:508 1:766 2:265 � (40)

U = 0BBBBBB� 1:000 0:000 1:000 0:000 0:000 0:0000:000 1:000 0:000 1:000 0:000 0:0000:000 0:000 0:000 0:000 1:000 0:0000:000 �1:400 0:000 1:687 0:000 0:0001:400 0:000 �1:687 0:000 0:000 0:0000:000 0:000 0:000 0:000 0:000 1:000
1CCCCCCA (41)Then the piture of the resonane modes is lear. For the two lowest frequenies we have (A0 is just anarbitrary onstant) �x = 1:000A0 os(2�f1 t)��y = 1:400A0 os(2�f1 t) , and �y = 1:000A0 os(2�f1 t)��x = �1:400A0 os(2�f1 t) (42)13



we see that (�x;��y) osillate with the same sign, whih means that when the amera moves towards positivex it rotates lokwise around the y-axis. The same is true for (�y;��x) beause as the amera moves towardspositive y it rotates ounter lokwise around the x-axis. So this is like a person roking standing on his feet.For the next two modes we have�x = 1:000A0 os(2�f1 t)��y = �1:687A0 os(2�f3 t) , and �y = 1:000A0 os(2�f1 t)��x = 1:687A0 os(2�f3 t) (43)and this osillation is like a person hanging from his head. The other two modes orrespond to osillations alongand around the z-axis.Figure 9.1 shows how the normalize frequenies vary with the moment of inertia per unit mass (f1;2=f0 arein red, f3;4=f0 in blue, f5=f0 in light blue and f6=f0 in green). The left dots orrespond to the assumption thatthe amera is a solid uniform ylinder, the dots on the right to the assumtion that the weight of the amera isonentrated on the walls of the ylinder.

Figure 9. Left plot shows the normalize frequenies as a funtion of the moment of inertia per unit mass. The di�ereneolors orrespond to: red = f1;2=f0, blue = f3;4=f0, light blue = f5=f0 and green = f6=f0. The left (right) dots orrespondto I=m for a solid (hollow) ylinder. The plot on the right shows the variation of f=f0 for the di�erent hexapod parameterslisted in Table 4.Table 4. List of the hexapod parameters used to alulate resonane frequenies. The parameters r to B are in millimeters,the resonant frequenies fi=0 = fi=f0 are alulated using the moment of inertia orresponding to a hollow ylinder.r R A A' B a22 a24 a44 a33 a66 f1=0 f3=0 f5=0 f6=0Cnf. 1 612.5 715.0 697 697 100 1.440 0.494 0.670 3.120 0.924 0.82 1.44 1.77 1.60612.5 715.0 697 697 0 1.440 0.350 0.585 3.120 0.924 0.88 1.34 1.77 1.60612.5 715.0 697 697 200 1.440 0.638 0.783 3.120 0.924 0.77 1.54 1.77 1.60Cnf. 2 612.5 715.0 697 500 100 1.389 0.404 0.710 3.223 1.022 0.91 1.40 1.80 1.68612.5 715.0 697 500 0 1.389 0.265 0.643 3.223 1.022 0.97 1.30 1.80 1.68612.5 715.0 697 500 200 1.389 0.542 0.805 3.223 1.022 0.85 1.50 1.80 1.68612.5 715.0 460 300 100 2.116 0.498 0.442 1.769 1.557 0.74 1.56 1.33 2.08612.5 612.5 697 697 100 1.307 0.586 0.739 3.386 0.736 0.74 1.48 1.84 1.43We also studied the stability of the resonant frequenies with respet to di�erent hexapod parameters. Table4 shows a list of the parameters that were varied: r and R are the radius of the motion and �xed plates, A is the14



distane between the motion and �xed plates, A0 is the distane between the two planes formed by the hexapodjoint insertion points, and B is the distane between the motion plate and the Center of Mass. The matrixelements a22 to a66 are used to alulate the resonant frequenies in Eqs 35 to 38. The resonant frequeniesfi=0 = fi=f0 are alulated using the moment of inertia orresponding to a hollow ylinder. Figure 9.2 shows thenormalize resonane frequenies for all the ases listed in Table 4.Looking at Figure 9.2 and Table 4 it is fair to say that the lowest resonant frequeny will most likelybe larger than 0:75 f0. To alulate f0 = pk=m=2� we will assume a amera mass of m = 3500 Kg, andk = (75; 100; 150; 200) Newtons/�m, then f0 = (23:3; 26:9; 32:9; 38:0) Hz. Then we believe that it is save to saythat the lowest resonane mode will have a frequeny larger than 0:75� 23:3 = 17:5 Hz.7. CONCLUSIONSIn this note we have shown that� Six atuators arranged in a hexapod on�guration form a system that is not over-onstrained and that isstable with respet to hanges in the design parameters.� Given the spae we plan to utilize for our hexapod system and the range of CM positions, the maximumfore in any of the atuators is about 2/3 of the amera weight.� The atuator to plate joints should be designed suh that the atuators an rotate in all three dimensionsand that the binding in the joints is small enough to allow for a single atuator step motion.� The atuators should be made as sti� and short as possible in order to minimize amera motion due toelasti deformation in the atuators. Also the sti�er the atuators the larger the one step fore exerted onthe plates, whih will failitate the design of the atuator to plate joints.� We have alulated the rms and the minimum interval that overs all possible motion errors due to the�nite atuator step size. We �nd that an atuator positioning errors of 3 �m is enough to satisfy all theurrent positioning requirements. We have also shown that the requirement on tip and tilt determine the3 �m positioning error in the atuators.Perhaps one last omment on plate design versus atuators length is in order. Using long atuators allowsto group the insertion points in pairs, whih is equivalent to having three insertion points in eah plate. Thisminimizes the moments on the plates but inreases the elasti deformations in the atuators. If the plates anbe designed in a very sti� way the insertion points an be opened up whih will shorten the atuators lengthand minimize the amera motion due to elasti deformations.

15



APPENDIX A. ACTIVE ROTATIONSThis setion desribes the alulation of the matrix needed to perform ative rotations in three dimensions. Inan ative rotation the objets are rotated while the oordinate system remains �xed. In Figure 10 the vetorlabeled �!x 1 has been rotated by an angle � to a new position �!x 2. In terms of the oordinates (x; y) this rotationis written as

Figure 10. Two dimensional rotation.� x2y2 � = � os � �sin �sin � os � �� x1y1 � (44)It is easy to understand the struture of the above matrix as follows. To preserved lengths the 2x2 matrixresponsible for the rotation has to be unitary, whih means that the matrix an be written in terms of sines andosines. For a zero angle rotation the matrix has to be the identity matrix, whih means that the osines haveto be along the diagonal and the sines o� the diagonal. In order for the salar produt of rows 1 and 2 to bezero one of the sines need to have a negative sign. It is easy to see where to put the negative sign by looking awhih oordinate gets smaller. In the rotation shown in Figure 10 the x oordinate gets smaller after the rotationtherefore the minus sign is in row 1. The extension to three dimensions is obviously given by:0� x2y2z2 1A = 0� os � �sin � 0sin � os � 00 0 1 1A0� x1y1z1 1A (45)The above rotation is said to be around the z-axis, and the rotation is de�ned as positive when the objets rotatearound the z-axis as a right handed ork srew. To simplify the notation we an write�!x = 0� xyz 1A (46)and �!x 2 = Rz(�)�!x 1 (47)Writing � = os � and s� = sin �, the rotation Rz(�) an simply be written asRz(�) = 0� � �s� 0s� � 00 0 1 1A (48)16



In the same way we an de�ne 3-dimensional ative rotations around the x-axis and y-axis asRx(�) = 0� 1 0 00 � �s�0 s� � 1A , and Ry(�) = 0� � 0 s�0 1 0�s� 0 � 1A (49)

Figure 11. Three dimensional rotation using Euler angles.As we an see in Figure 11 if a body is rotated around the x-axis the y-oordinate is the one that gets smallerand the minus sign has to be in the seond row. For a rotation around the y-axis the z-oordinate gets smallerand the minus sign is in the third row.Using Euler angles as de�ned in Figure 11 a general 3-dimensional rotation an be written asR(�; �; ) = Rz(�) Ry(�) Rz() (50)Or in matrix form asR(�; �; ) = 0� � �s� 0s� � 00 0 1 1A0� � 0 s�0 1 0�s� 0 � 1A0�  �s 0s  00 0 1 1A= 0� � �s� 0s� � 00 0 1 1A0� �  � � s s�s  0� s�  s� s � 1A= 0� � �  � s� s � � � s � s�  � s�s� �  + � s � s� � s + �  s� s�� s�  s� s � 1A (51)Rotations around the x-axis using Euler angles an be produed byRx(�) = R(3�=2; �;�3�=2) (52)This is easy to see by noting that sin(3�=2) = �1 and os(3�=2) = 0, and therefore � =  = 0 and s = �s� =1. Replaing these values in Eq. 51 we obtain the rotation around the x-axis shown in Eq. 49. It is also easy tosee that the rotations around the y-axis and z-axis are given byRy(�) = R(0; �; 0) , and Rz(�) = R(�; 0; 0) = R(0; 0; �) (53)17



A.1 Small rotationsSmall rotations ommute, so it is onvenient in this ase to use rotations around the x, y and z axis de�ned as(tip,tilt,twist)=(�x; �y; �z). For small angles we an write Eqs 48 and 49 asRi(�) = I(1� �22 ) +Mi � +O(�3) (54)where I is the identity matrix andMx = 0� 0 0 00 0 �10 1 0 1A , My = 0� 0 0 10 0 0�1 0 0 1A , and Mz = 0� 0 �1 01 0 00 0 0 1A (55)Negleting terms in �3 or higher, the result of a tip, tilt and twist rotation will be given byRxyz(�x; �y; �z) = Rx(�x)Ry(�y)Rz(�z) (56)= �I(1� �2x2 ) +Mx �x� "I(1� �2y2 ) +My �y# �I(1� �2z2 ) +Mz �z� (57)= I + (Mx �x +My �y +Mz �z) + (MxMy �x�y +MxMz �x�z +MyMz �y�z)�I(�2x2 + �2y2 + �2z2 ) (58)The required resolution for tip and tilt is 1 arse = 4.85 �rad. So we want the non-linear terms in Eq. 58 tobe smaller than 1 arse. That means �2 < 4:85 �rad or � < 2:20 mrad = 454 arse. So as long as the tip, tiltand twist rotations are smaller than 400 arse (whih translates into about 1.5 mm at the foal plane) we ansafely use the approximation Rxyz(�x; �y; �z) = I + (Mx �x +My �y +Mz �z) (59)APPENDIX B. CALCULATING ACTUATOR FORCESB.1 Stati fores when the atuator's weight is negletedIn this appendix we will alulate the stati fores on the hexapod atuators when the weight of the atuators anbe negelted. In Setion B.2 the fores will be alulated inluding the atuators weight. The stati problem wewant to solve requires the fores on the DECam amera, so we will alulate the fores exerted by the atuatorson the motion plate. The fores on the atuators themselves are just the negative of the fores we will alulate.Sine these fores are in the diretion of the atuators we will write them as�!F i = Fi f̂i (60)where f̂i is a unit vetor in the diretion of atuator i, and points from the �xed to the motion plate. With thisde�nition of f̂i the fore Fi will be positive when the atuator is pushing on the motion plate, therefore Fi > 0means that the hexapod is under ompression.The stati problem that we have to solve is: 6Xi=1 Fi f̂i + �!w = 0 (61)6Xi=1 Fi �!� i � f̂i = 0 (62)18



where �!w is the DECam weight applied in the DECam Center of Mass (CM) and the moments in Eq. 62 arealulated relative to the CM, that is �!� i = �!r i ��!r CM (63)The previous equations form a 6x6 linear system with the following struture0BBBBBB� fx1 fx2 fx3 fx4 fx5 fx6fy1 fy2 fy3 fy4 fy5 fy6fz1 fz2 fz3 fz4 fz5 fz6nx1 nx2 nx3 nx4 nx5 nx6ny1 ny2 ny3 ny4 ny5 ny6nz1 nz2 nz3 nz4 nz5 nz6
1CCCCCCA0BBBBBB� F1F2F3F4F5F6

1CCCCCCA = 0BBBBBB� �wx�wy�wz000
1CCCCCCA (64)with �!n i = �!� i � f̂i. If we write Eq. 64 as M �!F = �!U then the solution is�!F =M�1�!U (65)The weight is always in the -z diretion, �!w = (0; 0;�w), therefore the fore atuator i exerts on the motion plateis given by Fi =M�1i3 w (66)and the fores per unit weight are Fi=w =M�1i3 (67)B.2 Stati fores when the atuator's weight is inluded
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